Question:-
β€œWhat really happens inside the Spark engine when I run a simple .read() or .join() on a file?”

Let me break this down in a clear, interview-ready, cluster-level Spark execution flow, step-by-step:


πŸ” Spark Cluster Background Process (Example: spark.read.csv(...))

Imagine this code:

df = spark.read.csv("/path/to/1GB_file.csv")
df2 = df.repartition(16).groupBy("col").count()
df2.write.mode("overwrite").parquet("/output")

Let’s analyze it in chronological order:


βœ… 1. Driver Program Starts the Spark Application

  • Your code is submitted to Spark Driver.
  • The Driver:
    • Initializes a SparkSession
    • Connects to the Cluster Manager (YARN, Kubernetes, or Spark Standalone)
    • Requests resources β†’ Executors

βœ… 2. Cluster Manager Allocates Executors

ComponentDescription
DriverMain controller that coordinates the job
ExecutorsWorkers that do the actual task processing
Cluster ManagerAllocates resources like executors/cores/memory

Example:

  • You request: 4 Executors Γ— 4 Cores Γ— 8 GB RAM
  • Cluster Manager provisions them and tells Driver: β€œReady!”

βœ… 3. Logical Plan β†’ Physical Plan

When you run:

df = spark.read.csv("/path/to/1GB_file.csv")

Spark performs:

  • Logical Plan: Describes “what” you want
  • Optimized Logical Plan: Catalyst optimizer prunes & simplifies
  • Physical Plan: Describes “how” to execute β€” e.g., 8 file splits β†’ 8 tasks

βœ… 4. Spark Reads the File

  • File is split based on:
    • HDFS block size (e.g., 128MB)
    • Number of input files
  • Each split β†’ 1 task
  • Spark schedules these tasks on available executor cores

β›³ Stage 0 β†’ Task 0 to Task 7 (1 per file split)


βœ… 5. Transformation (Repartition + GroupBy)

df2 = df.repartition(16).groupBy("col").count()
  • repartition(16) β†’ full shuffle
  • groupBy("col").count() β†’ triggers another wide transformation (needs data redistribution)
  • Spark inserts ShuffleStage in physical plan

🧠 Result:

  • Stage 1 = repartition(16)
  • Stage 2 = groupBy/count() β†’ another shuffle
  • Number of tasks = based on spark.sql.shuffle.partitions (default = 200)

βœ… 6. Write Output

df2.write.parquet("/output")
  • Final stage: Stage 3
  • 200 tasks β†’ write output into 200 Parquet files (one per partition)
  • Can be optimized by .coalesce() before writing

βœ… 7. Stages, Jobs, Tasks Breakdown

StageActionExample Task Count
0Read CSV (input splits)8 (for 1 GB)
1Repartition16
2GroupBy β†’ Shuffle β†’ Aggregation200 (default shuffle partitions)
3Write to Parquet200

Each stage = one boundary of shuffle

Each stage = set of tasks


βœ… 8. Task Scheduling Across Executors

If you have:

  • 4 Executors Γ— 4 Cores = 16 parallel tasks
  • 200 tasks β†’ 12.5 task waves

Execution:

Round 1: Task 0–15 β†’ Run on all cores
Round 2: Task 16–31 β†’ Next wave
...
Round 13: Task 192–199 β†’ Final wave

βœ… 9. How Fault Tolerance Works in Spark

  • Spark stores RDD lineage β†’ Directed Acyclic Graph (DAG)
  • If a task fails:
    • Spark retries (default = 4 times)
    • Only the failed task is re-executed β€” not the whole job
  • If an executor fails:
    • Cluster manager re-launches a new executor
    • Spark reschedules pending tasks

➑️ No data loss due to:

  • Lazy evaluation
  • Immutability
  • DAG recomputation

βœ… 10. Monitoring the Whole Process (Spark UI)

TabWhat You See
JobsTotal jobs triggered (1 action = 1 job)
StagesShuffle boundaries, task counts
TasksTask status, run time, executor used
StorageCached/persisted RDDs/DFs
ExecutorsCPU/memory usage, number of tasks

πŸ“Š Visual Flow Summary

Driver Program
    ↓
Cluster Manager β†’ Executors
    ↓
Logical Plan β†’ Optimized Plan β†’ Physical Plan
    ↓
Stage 0: Read File β†’ 8 Tasks
    ↓
Stage 1: Repartition β†’ 16 Tasks
    ↓
Stage 2: GroupBy/Count β†’ 200 Tasks (Shuffle)
    ↓
Stage 3: Write Parquet β†’ 200 Tasks

βœ… Conclusion

ComponentDescription
DriverOrchestrates job, breaks into DAG
ExecutorsRun tasks and store shuffle data
StagesCreated at shuffle boundaries
TasksOne unit of execution per input split or partition
JobsTriggered per action (.show(), .count(), .write())
Fault ToleranceAchieved via task retry & DAG recomputation

# πŸ“˜ Advanced Spark Execution Flow with Code
# Covers: caching, broadcast joins, shuffle stages, write modes, and checkpointing

from pyspark.sql import SparkSession
from pyspark.sql.functions import broadcast

spark = SparkSession.builder \
    .appName("AdvancedSparkFlow") \
    .config("spark.sql.shuffle.partitions", 8) \
    .getOrCreate()

# --------------------------------------------
# βœ… Step 1: Load Data & Observe Initial Stages
# --------------------------------------------

# Let's load a large dataset (~100MB)
df_large = spark.range(10_000_000).withColumnRenamed("id", "user_id")
df_large.write.mode("overwrite").parquet("/tmp/large_users")

# Small lookup table
df_lookup = spark.createDataFrame([(i, f"Name_{i}") for i in range(1000)], ["user_id", "name"])
df_lookup.write.mode("overwrite").parquet("/tmp/lookup")

# Read both
df1 = spark.read.parquet("/tmp/large_users")
df2 = spark.read.parquet("/tmp/lookup")

# --------------------------------------------
# βœ… Step 2: Caching the Large DataFrame
# --------------------------------------------

# Cache the large table
# This will appear in Spark UI -> "Storage" tab

df1.cache()
df1.count()  # Action to materialize the cache

# You can verify with:
# spark.catalog.isCached("<table/view>") β†’ for SQL views

# --------------------------------------------
# βœ… Step 3: Broadcast Join Optimization
# --------------------------------------------

# Force a broadcast join
joined = df1.join(broadcast(df2), on="user_id", how="inner")

# Another way Spark broadcasts automatically:
# spark.conf.set("spark.sql.autoBroadcastJoinThreshold", 10 * 1024 * 1024)  # 10 MB

# View in Spark UI > SQL > Join plan shows BroadcastHashJoin

# --------------------------------------------
# βœ… Step 4: Understanding Stages
# --------------------------------------------

# Triggers multiple stages:
# - Stage 0: read & broadcast lookup
# - Stage 1: read + cached large file (df1)
# - Stage 2: join + write

# Let's perform an aggregation after join
agg_df = joined.groupBy("name").count()

# --------------------------------------------
# βœ… Step 5: Saving the Output
# --------------------------------------------

# Write output with partitioning
agg_df.write.mode("overwrite").partitionBy("name").parquet("/tmp/output_partitioned")

# Use .coalesce(1) to reduce output files:
# agg_df.coalesce(1).write.mode("overwrite").parquet("/tmp/output_single_file")

# --------------------------------------------
# βœ… Step 6: Checkpointing (for lineage cutoff)
# --------------------------------------------

# Must set checkpoint directory
spark.sparkContext.setCheckpointDir("/tmp/checkpoint")

# Apply checkpointing
chk_df = agg_df.checkpoint()
chk_df.count()

# Why checkpoint? Cuts off lineage, avoids long DAG recomputation

# --------------------------------------------
# βœ… Bonus: View Execution Plans
# --------------------------------------------

# Logical + physical plan
joined.explain(True)

# Check broadcast
# Look for "BroadcastHashJoin" in explain output

# --------------------------------------------
# βœ… Recap:
# - Caching: `df.cache()` and trigger an action
# - Broadcast Join: use `broadcast(df)` or auto if <10MB
# - Shuffle Stages: triggered by wide transformations (join, groupBy)
# - Checkpointing: cuts lineage, must call `setCheckpointDir()`
# - Writing: control file count using `.coalesce()` and `partitionBy()`

# Monitor in Spark UI β†’ Jobs, Stages, Storage, SQL tabs

Pages: 1 2


Discover more from HintsToday

Subscribe to get the latest posts sent to your email.

Posted in

Leave a Reply

Discover more from HintsToday

Subscribe now to keep reading and get access to the full archive.

Continue reading