Absolutely! Let’s break it down clearly by comparing:
π‘ Traditional RDBMS (like Oracle, Postgres, MySQL) vs. Vanilla PySpark (with Parquet/ORC) vs. PySpark with Delta Lake
Weβll explain each feature, its purpose in traditional SQL DBs, and whether it’s supported in Vanilla PySpark, and how Delta Lake fills the gap.
π 1. ACID Transactions
RDBMS | β Supported via transaction log |
---|---|
PySpark + Parquet | β Not supported |
Delta Lake | β Supported |
What It Means: ACID = Atomicity, Consistency, Isolation, Durability. Ensures data integrity (e.g., all-or-nothing writes, rollback on error).
Why PySpark Canβt Do It: Parquet/ORC are just files on disk (HDFS/S3) β no transaction coordination.
Delta Lake adds a _delta_log
that tracks atomic operations.
Use Case: Writing multiple updates β you want either all to succeed or none (e.g., financial transactions, ETL job failure rollback).
π°οΈ 2. Time Travel
RDBMS | β Via transaction/version logs or flashback |
---|---|
Vanilla PySpark | β Not supported |
Delta Lake | β Supported |
What It Means: You can query old versions of a table β useful for debugging, audits, rollback.
Delta Lake uses versioned snapshots stored in _delta_log
.
-- Delta Lake: Read previous version
SELECT * FROM table VERSION AS OF 5
Use Case: Accidentally deleted data? Just roll back to version 4.
π 3. Concurrent Writes
RDBMS | β Supported with row-level locks |
---|---|
Vanilla PySpark | β Dangerous |
Delta Lake | β Transactional locking using Delta log |
What It Means: Multiple users or jobs can safely update the same table.
Why PySpark Fails: If two Spark jobs write the same file path, one may overwrite the other β no locking mechanism.
Delta uses optimistic concurrency control (OCC) β detects conflicting changes and throws errors.
π 4. Schema Evolution
RDBMS | β Supports ALTER TABLE |
---|---|
Vanilla PySpark | β οΈ Limited |
Delta Lake | β Supports automatic schema merge |
What It Means: You can evolve a schema β add/remove columns dynamically.
PySpark Issue: Manual reconciliation of schemas.
# Delta Lake schema evolution
df.write.option("mergeSchema", "true").format("delta").mode("append").save(...)
Use Case: JSON or streaming data where new fields get introduced over time.
π 5. MERGE / UPSERT (SCD2 Support)
RDBMS | β
MERGE INTO , UPDATE , DELETE |
---|---|
Vanilla PySpark | β Manual logic |
Delta Lake | β
Supports native MERGE INTO |
What It Means: Efficiently update or insert based on conditions (Slowly Changing Dimensions, SCD2).
Vanilla Way:
# Manual Upsert: join β overwrite
existing = spark.read.parquet("path")
updated = new_data.join(existing, "id", "leftanti").union(new_data)
updated.write.mode("overwrite").parquet("path")
Delta Way:
MERGE INTO customers USING updates ON customers.id = updates.id
WHEN MATCHED THEN UPDATE SET ...
WHEN NOT MATCHED THEN INSERT ...
π§½ 6. Deletes / Updates
RDBMS | β Efficient |
---|---|
Vanilla PySpark | β Full overwrite needed |
Delta Lake | β Native support |
Problem: Want to delete all records where status = 'inactive'
.
PySpark:
- Read table
- Filter out records
- Overwrite entire dataset
Delta Lake:
DELETE FROM my_table WHERE status = 'inactive'
π 7. Change Tracking / Audit Logs
RDBMS | β System-managed or via triggers |
---|---|
Vanilla PySpark | β Not available |
Delta Lake | β
_delta_log keeps change history |
Use Case: Who changed what and when?
π 8. Indexing
RDBMS | β Indexes on columns |
---|---|
Vanilla PySpark | β Not supported |
Delta Lake | β οΈ Z-Ordering (helps but not real index) |
Problem: No B-Trees or hash indexes like in Oracle.
Delta Lake:
- Supports Z-Ordering β physically clusters data by column to improve query performance.
OPTIMIZE table_name ZORDER BY (user_id)
βοΈ 9. Stored Procedures / Triggers
RDBMS | β Supports procedural logic |
---|---|
Vanilla PySpark | β Not available |
Delta Lake | β Also not supported natively |
Spark doesn’t support SQL procedural logic (loops, if/else). You have to do this in PySpark/Python/Scala code.
π 10. Access Control
RDBMS | β Role-based, column-level security |
---|---|
Vanilla PySpark | β Controlled by storage layer (e.g., HDFS/S3) |
Delta Lake + Unity Catalog (Databricks) | β Fine-grained access control |
Why This Matters: If you store data on S3, access control happens at bucket or object level β not at row or column level like in databases.
Databricks Unity Catalog:
- Table/Column/Row level access
- RBAC, Data Lineage
β Summary Table
Feature | Traditional RDBMS | Vanilla PySpark | Delta Lake |
---|---|---|---|
ACID Transactions | β | β | β |
Time Travel | β | β | β |
Concurrent Writes | β | β | β |
Schema Evolution | β | β οΈ | β |
Merge / Upsert (SCD2) | β | β | β |
Deletes / Updates | β | β | β |
Change Tracking | β | β | β |
Indexing | β | β | β οΈ (Z-Ordering) |
Stored Procedures | β | β | β |
Access Control | β | β | β (via Unity Catalog) |
π Conclusion
- Vanilla PySpark (Parquet, ORC) is not a database. Itβs file-based: no transaction log, no versioning, no indexing.
- Delta Lake brings the power of databases (ACID, merge, delete, time travel) to data lakes using Parquet under the hood.
- Databricks with Unity Catalog adds governance, RBAC, lineage β making it a true enterprise Lakehouse.
Excellent β let’s break this down in-depth. We’ll explain key database features like Atomicity (ACID), SCD1/SCD2, and then compare Traditional RDBMS vs. Vanilla PySpark vs. Delta Lake/Databricks for each of them, with examples.
π₯ 1. Atomicity (from ACID)
Atomicity = All or Nothing
β Traditional RDBMS (e.g., Oracle, Postgres)
- Uses transactions:
Example:BEGIN; UPDATE accounts SET balance = balance - 500 WHERE id = 1; UPDATE accounts SET balance = balance + 500 WHERE id = 2; COMMIT;
- If any step fails, entire block rolls back.
- Supported by built-in transaction logs + locks.
β Vanilla PySpark (Parquet/CSV/ORC)
- Filesystem-based (HDFS, S3): No concept of transaction logs or rollback.
- Example:
df1.write.mode('overwrite').parquet("s3://data/step1/") df2.write.mode('overwrite').parquet("s3://data/step2/") # If this fails, step1 still written.
- If one write fails, others remain β not atomic.
β Delta Lake (on Databricks or OSS)
- Maintains _delta_log/ directory for transaction logs.
- Atomic actions:
from delta.tables import DeltaTable spark.sql("BEGIN") spark.sql(""" MERGE INTO target USING updates ON target.id = updates.id WHEN MATCHED THEN UPDATE SET ... WHEN NOT MATCHED THEN INSERT ... """) spark.sql("COMMIT")
- If any step fails: rollback using Delta transaction logs.
π 2. Slowly Changing Dimensions (SCD)
SCD1 (overwrite old data with new)
Use Case: Keep only the latest customer address.
β Traditional SQL:
UPDATE customers SET address = 'New York' WHERE customer_id = 101;
β Vanilla PySpark:
Manual steps:
df_existing = spark.read.parquet("s3://customers/")
df_updates = spark.read.parquet("s3://new_updates/")
df_merged = df_existing.join(df_updates, "customer_id", "left_outer")\
.withColumn("address", F.coalesce(df_updates.address, df_existing.address))
df_merged.write.mode('overwrite').parquet("s3://customers/")
- No native
MERGE
β must read β join β overwrite.
β Delta Lake (Databricks):
MERGE INTO customers USING updates
ON customers.customer_id = updates.customer_id
WHEN MATCHED THEN UPDATE SET *
WHEN NOT MATCHED THEN INSERT *
OR (Python API):
DeltaTable.forPath(spark, "s3://delta/customers").alias("t") \
.merge(df_updates.alias("u"), "t.customer_id = u.customer_id") \
.whenMatchedUpdateAll() \
.whenNotMatchedInsertAll() \
.execute()
SCD2 (history tracking)
Use Case: Track every change with start_date
, end_date
, and is_active
.
β Traditional SQL:
-- Close old record
UPDATE customer_dim SET end_date = CURRENT_DATE, is_active = 0
WHERE customer_id = 101 AND is_active = 1;
-- Insert new version
INSERT INTO customer_dim (id, address, start_date, is_active)
VALUES (101, 'New York', CURRENT_DATE, 1);
β Vanilla PySpark:
Manual logic:
# Read old + new
existing = spark.read.parquet("s3://customer_dim/")
incoming = spark.read.parquet("s3://incoming/")
# Close old
closed = existing.join(incoming, "id")\
.withColumn("end_date", F.current_date())\
.withColumn("is_active", F.lit(0))
# Add new rows
new_rows = incoming.withColumn("start_date", F.current_date())\
.withColumn("end_date", F.lit(None))\
.withColumn("is_active", F.lit(1))
# Combine and write
final = closed.union(new_rows)
final.write.mode('overwrite').parquet("s3://customer_dim/")
β Delta Lake:
from delta.tables import DeltaTable
delta = DeltaTable.forPath(spark, "s3://delta/customer_dim")
# Step 1: Mark old records inactive
delta.alias("target").merge(
updates.alias("source"),
"target.id = source.id AND target.is_active = 1"
).whenMatchedUpdate(set={
"end_date": "current_date()",
"is_active": "0"
}).execute()
# Step 2: Insert new versions
updates.withColumn("start_date", F.current_date())\
.withColumn("is_active", F.lit(1))\
.write.format("delta").mode("append").save("s3://delta/customer_dim")
π Feature-by-Feature Comparison Table
Feature | RDBMS | PySpark (Vanilla) | PySpark + Delta Lake |
---|---|---|---|
ACID Transactions | β Yes | β No | β Yes |
SCD1 | β Easy | β οΈ Manual Logic | β Native MERGE |
SCD2 | β Easy | β οΈ Manual + Union | β Built-in support |
MERGE/UPSERT | β Yes | β No | β Yes |
DELETE/UPDATE | β Yes | β No (overwrite only) | β Yes |
Time Travel | β οΈ Point-in-time recovery | β No | β Versioned reads |
Indexing / Stats | β B-tree, Bitmap | β Not supported | β οΈ Z-Order |
Schema Evolution | β ALTER TABLE | β οΈ Manual handling | β Auto evolution |
Stored Procedures | β PL/SQL | β None | β οΈ Not supported |
Access Control | β Roles & Privs | β Depends on HDFS/S3 | β Unity Catalog |
Audit Logs | β Triggers | β None | β _delta_log |
π‘ Summary: Key Takeaways
System | Strengths | Weaknesses |
---|---|---|
Traditional RDBMS | Strong transactional guarantees, mature SQL support, easy SCD1/SCD2 | Not distributed, not suited for Big Data scale |
Vanilla PySpark (Parquet) | Scales massively, good for batch processing | No ACID, SCDs, updates, concurrency guarantees |
Databricks (Delta Lake) | Distributed + ACID, Upserts, Time Travel, Audit | Slight learning curve, needs Delta format |