Azure Databricks tutorial roadmap (Beginner โ†’ Advanced), tailored for Data Engineering interviews in India

Great! Here’s how weโ€™ll structure both:


๐Ÿงช Hands-On Databricks Notebooks (Ready-to-Use)

Each notebook is short and focused on one concept, designed for execution in Azure Databricks.

๐Ÿ“˜ Notebook 1: Spark RDD Basics

  • Create and transform RDDs
  • Word count from text RDD
  • Filter, map, reduce examples
rdd = spark.sparkContext.textFile("/databricks-datasets/shakespeare/*")
words = rdd.flatMap(lambda line: line.split(" "))
result = words.map(lambda word: (word, 1)).reduceByKey(lambda a, b: a + b)
result.take(5)

๐Ÿ“˜ Notebook 2: DataFrame Basics

  • Load CSV/JSON data
  • Filter, group, aggregation
  • SQL queries over DataFrames
df = spark.read.option("header", "true").csv("/databricks-datasets/retail-org/sales.csv")
df.filter(df.amount > 500).groupBy("region").sum("amount").show()
df.createOrReplaceTempView("sales")
spark.sql("SELECT region, SUM(amount) FROM sales GROUP BY region").show()

๐Ÿ“˜ Notebook 3: Delta Lake & Lakehouse

  • Create Delta table
  • Upserts with MERGE INTO
  • Time Travel with VERSION AS OF
df.write.format("delta").mode("overwrite").saveAsTable("bronze_sales")

spark.sql("""
MERGE INTO silver_sales USING updates
ON silver_sales.id = updates.id
WHEN MATCHED THEN UPDATE SET *
WHEN NOT MATCHED THEN INSERT *
""")

spark.read.format("delta").option("versionAsOf", 0).table("silver_sales").show()

๐Ÿ“˜ Notebook 4: Databricks Workspace Basics

  • How to use: Repos, Notebooks, Clusters
  • Link GitHub repo
  • Create Job from Notebook

๐ŸŽฏ Sample Interview Questions (Conceptual + Scenario)

๐Ÿง  Spark & Databricks Concepts

  1. What are the differences between RDD and DataFrame in Spark?
  2. Explain the Catalyst and Tungsten optimizers.
  3. What are the benefits of Delta Lake over traditional data lakes?
  4. What is a Lakehouse Architecture and why is it needed?
  5. How do you handle schema evolution in Delta Lake?
  6. What is the difference between Interactive and Job Clusters in Databricks?
  7. What is the role of createOrReplaceTempView() in Spark SQL?

๐Ÿ” Scenario-Based Questions

  1. ๐Ÿงช You need to implement slowly changing dimensions (SCD) in a table. Which Delta Lake feature would you use?
  2. ๐Ÿ” Your Spark job runs slowly. How do you optimize joins and partitioning?
  3. ๐Ÿงผ You receive semi-structured JSON data daily. How will you process and clean it using the Bronze โ†’ Silver โ†’ Gold model?
  4. ๐Ÿ”’ How would you integrate Azure Key Vault to manage credentials in Azure Databricks?
  5. ๐Ÿ“Š You want to create dashboards directly on Delta tables. How do you connect Power BI or Synapse to your Lakehouse?

Here’s a complete tutorial for Spark RDD on Azure Databricks, covering all key concepts, transformations, actions, and real-world use cases โ€” fully aligned with data engineering interview preparation.


๐Ÿ“˜ Spark RDD Tutorial on Azure Databricks

โœ… Youโ€™ll learn everything about RDDs: creation, transformations, actions, and when to use them over DataFrames.


๐Ÿงฑ 1. What is an RDD?

RDD (Resilient Distributed Dataset) is the core low-level API in Spark for distributed processing.

  • Immutable
  • Partitioned
  • Lazy Evaluation
  • Fault Tolerant (Lineage)
  • In-memory computing

๐Ÿ”ง 2. How to Create an RDD

From a Python collection:

rdd1 = spark.sparkContext.parallelize([1, 2, 3, 4, 5])

From external data (text file):

rdd2 = spark.sparkContext.textFile("/databricks-datasets/README.md")

๐Ÿ”„ 3. Transformations (Lazy)

๐Ÿ”น map(): Element-wise transformation

rdd = rdd1.map(lambda x: x * x)

๐Ÿ”น filter(): Filter elements

even_rdd = rdd1.filter(lambda x: x % 2 == 0)

๐Ÿ”น flatMap(): Break lines into words

rdd = spark.sparkContext.textFile("/databricks-datasets/README.md")
words = rdd.flatMap(lambda line: line.split(" "))

๐Ÿ”น distinct(), union(), intersection()

rdd1 = spark.sparkContext.parallelize([1, 2, 3])
rdd2 = spark.sparkContext.parallelize([2, 3, 4])
rdd1.union(rdd2).distinct().collect()

โš™๏ธ 4. Actions (Trigger computation)

๐Ÿ”ธ collect(), take(n)

rdd1.collect()
rdd1.take(3)

๐Ÿ”ธ reduce(), count(), first()

total = rdd1.reduce(lambda a, b: a + b)

๐Ÿ”ธ foreach()

rdd1.foreach(lambda x: print(x))

๐Ÿง  5. Pair RDD (Key-Value)

Create a Pair RDD:

pair_rdd = spark.sparkContext.parallelize([("a", 1), ("b", 1), ("a", 2)])

Group and Reduce:

pair_rdd.reduceByKey(lambda a, b: a + b).collect()
pair_rdd.groupByKey().mapValues(list).collect()

๐Ÿ“š 6. RDD Use Cases

โœ… 1. Word Count (Classic Example)

lines = spark.sparkContext.textFile("/databricks-datasets/README.md")
words = lines.flatMap(lambda line: line.split())
word_pairs = words.map(lambda word: (word.lower(), 1))
word_counts = word_pairs.reduceByKey(lambda a, b: a + b)
word_counts.take(10)

โœ… 2. Log File Analysis

log_rdd = spark.sparkContext.textFile("/databricks-datasets/logs/sample_logs")
errors = log_rdd.filter(lambda line: "ERROR" in line)
print("Total errors:", errors.count())

โœ… 3. Clickstream Analytics

rdd = spark.sparkContext.parallelize([
  ("user1", "product1"),
  ("user2", "product2"),
  ("user1", "product2")
])
rdd.groupByKey().mapValues(list).collect()

โœ… 4. Custom ETL (Non-tabular JSON)

raw = spark.sparkContext.textFile("/databricks-datasets/iot/iot_stream.json")
parsed = raw.map(lambda x: json.loads(x))
temp_data = parsed.map(lambda x: (x["device_id"], x["temp"]))
high_temp = temp_data.filter(lambda x: x[1] > 70)

๐Ÿงช 7. When to Use RDD Over DataFrames

Use CaseUse RDD?
Custom transformations or logicโœ… Yes
Full control over data partitionsโœ… Yes
Tabular data (structured)โŒ Use DataFrame
SQL queries or Catalyst optimizationโŒ Use DataFrame
Handling unstructured/semi-structuredโœ… Yes

๐Ÿงช 8. RDD Lineage and Fault Tolerance

Each RDD stores lineage of transformations, so in case of node failure, Spark can recompute lost partitions.

rdd = spark.sparkContext.parallelize([1, 2, 3])
rdd2 = rdd.map(lambda x: x + 1)
print(rdd2.toDebugString())

๐Ÿ’ก 9. RDD vs DataFrame vs Dataset

FeatureRDDDataFrameDataset (Scala/Java)
API LevelLow-levelHigh-levelMid-level
PerformanceSlowerOptimizedOptimized
Use CaseComplex logicStructured dataType-safety + logic
Catalyst OptimizationโŒโœ…โœ…

๐Ÿง‘โ€๐Ÿ’ป Final Tip: Cluster & Notebook Setup on Databricks

  1. Go to Azure Databricks โ†’ Create Workspace
  2. Launch a Cluster (choose runtime with Apache Spark)
  3. Create a Notebook โ†’ Language: Python
  4. Run above RDD snippets to practice end-to-end!

Pages: 1 2 3 4 5 6 7 8