Azure Databricks tutorial roadmap (Beginner β†’ Advanced), tailored for Data Engineering interviews in India

Here’s your complete tutorial on Apache Spark DataFrame in Azure Databricks, covering everything from basics to advanced operations exclusive to Azure Databricks (not available in standard on-prem PySpark setups).


πŸ“˜ Azure Databricks DataFrame Tutorial (2025)


πŸ“Œ Part 1: What is a DataFrame in Spark?

A DataFrame is a distributed, table-like, high-level API for structured and semi-structured data.

πŸ”§ Internals:

  • Built on top of RDDs.
  • Uses Catalyst Optimizer (logical + physical plan optimization).
  • Uses Tungsten Engine (bytecode generation for CPU/memory efficiency).

βœ… Benefits:

  • SQL-like operations
  • Faster than RDDs
  • Schema-aware
  • Optimized under the hood

βš™οΈ Part 2: Creating DataFrames in Azure Databricks

πŸ“„ From CSV/Parquet/JSON:

df = spark.read.option("header", "true").csv("/databricks-datasets/retail-org/sales.csv")

🧱 From Python dict or list:

data = [("Alice", 29), ("Bob", 31)]
schema = ["name", "age"]
df = spark.createDataFrame(data, schema)

From Azure Blob or ADLS Gen2:

df = spark.read.format("csv").option("header", "true")\
     .load("abfss://container@storageaccount.dfs.core.windows.net/data/sales.csv")

πŸ” Part 3: Common Operations

πŸ“Œ Basic Actions

df.show()
df.printSchema()
df.columns
df.describe().show()

πŸ“Œ Filtering & Transformation

df.filter(df.amount > 100).select("region", "amount").show()
df.withColumn("amount_tax", df.amount * 1.18).show()

πŸ“Œ Grouping & Aggregation

df.groupBy("region").agg({"amount": "sum", "id": "count"}).show()

πŸ“Š Part 4: SQL on DataFrames

Temp View

df.createOrReplaceTempView("sales")
spark.sql("SELECT region, SUM(amount) FROM sales GROUP BY region").show()

πŸ” Part 5: Joins

df1.join(df2, df1.id == df2.id, "inner").show()

Join types: inner, left, right, outer, semi, anti


πŸš€ Part 6: Performance Optimization in Azure Databricks

βœ… Catalyst Optimizer

  • Pushes down filters
  • Eliminates unnecessary scans
  • Rewrites queries for efficiency

βœ… Tungsten Engine

  • Memory management
  • Cache-aware computation
  • Whole-stage code generation

πŸ’Ž Part 7: Azure Databricks-Specific Capabilities (Not Available in On-Prem PySpark)

FeatureDescription
βœ… Unity CatalogFine-grained access control across workspaces, tables, and views
βœ… Auto LoaderIncrementally loads new files from cloud storage without manual tracking
βœ… Delta Live Tables (DLT)Declarative ETL pipelines with error handling, auto-dependency management
βœ… Notebook WorkflowsOrchestrate multi-notebook jobs with parameters, conditions, retries
βœ… Cluster-Scoped Init ScriptsInject libraries, secrets into clusters automatically
βœ… Git-backed Repos in WorkspaceSource control with GitHub, Azure DevOps built into UI
βœ… Optimized Runtime for SparkPreconfigured Spark runtime with MLlib, Delta, TensorFlow, RAPIDS, etc.
βœ… Photon Engine (SQL Acceleration)Accelerated vectorized engine for large SQL workloads

πŸ“¦ Part 8: Working with Azure Services

🌐 Azure Blob Storage / ADLS Gen2

spark.conf.set("fs.azure.account.key.<storage>.blob.core.windows.net", "<access-key>")
df = spark.read.text("wasbs://<container>@<storage>.blob.core.windows.net/file.txt")

πŸ” Azure Key Vault Integration

dbutils.secrets.get(scope="kv-scope", key="db-password")

πŸ§ͺ Part 9: Use Cases on Azure Databricks DataFrame

βœ… 1. Data Cleansing + Validation

cleaned_df = df.dropna().filter("amount > 0")

βœ… 2. Streaming Data Ingestion + Analysis

streaming_df = spark.readStream.format("csv").schema(schema).load("/mnt/streaming/")
streaming_df.groupBy("region").count().writeStream.outputMode("complete").format("console").start()

βœ… 3. Machine Learning Prep

from pyspark.ml.feature import StringIndexer, VectorAssembler
indexer = StringIndexer(inputCol="category", outputCol="category_index")
df = indexer.fit(df).transform(df)

πŸ“Œ Part 10: Summary Table

ConceptExample
Read CSVspark.read.csv()
Filter Rowsdf.filter(df.amount > 100)
Group & Aggregatedf.groupBy("region").sum("amount")
SQL ViewcreateOrReplaceTempView("sales")
Joindf1.join(df2, "id")
Auto LoadercloudFiles("path") β€” only in Databricks
Delta Live TablesDeclarative ETL β€” only in Databricks
Git IntegrationBuilt-in Git Repos

Pages: 1 2 3 4 5 6 7 8