Here’s a clear and structured comparison of RDD, DataFrame, and Dataset in Apache Spark:


๐Ÿ” RDD vs DataFrame vs Dataset

FeatureRDD (Resilient Distributed Dataset)DataFrameDataset
Introduced InSpark 1.0Spark 1.3Spark 1.6
Type Safetyโœ… Compile-time type safety (for RDD[T])โŒ Not type-safe (rows with schema)โœ… Type-safe (only in Scala/Java)
Ease of UseโŒ Low-level APIs (map, flatMap, filter)โœ… High-level SQL-like APIsโœ… High-level + typed objects
PerformanceโŒ Slower (no Catalyst or Tungsten)โœ… Optimized (Catalyst + Tungsten)โœ… Optimized (Catalyst + Tungsten)
SerializationJava Serialization (slow)Tungsten binary format (fast)Tungsten binary format (fast)
Memory UsageHigh (no optimization)OptimizedOptimized
TransformationsFunctional: map, filter, reduceSQL-style: select, groupBy, aggCombines functional and SQL-style
Lazy Evaluationโœ… Yesโœ… Yesโœ… Yes
Custom Functionsโœ… Full flexibility with lambdas/UDFsโœ… UDFs allowed but slowerโœ… UDFs + compile-time checks
Support in PySparkโœ… Yesโœ… YesโŒ No (Dataset API is Scala/Java only)
When to UseComplex, low-level data transformationsSQL-style analytics, aggregationsType-safe transformations (Scala/Java only)

๐Ÿ”ง Code Examples

๐Ÿ”น RDD

rdd = spark.sparkContext.parallelize([("a", 1), ("b", 2)])
rdd.map(lambda x: (x[0], x[1] + 1)).collect()

๐Ÿ”น DataFrame

df = spark.createDataFrame([("a", 1), ("b", 2)], ["key", "value"])
df.selectExpr("key", "value + 1 as value_plus_1").show()

๐Ÿ”น Dataset (only in Scala)

case class Record(key: String, value: Int)
val ds = Seq(Record("a", 1), Record("b", 2)).toDS()
ds.map(r => r.copy(value = r.value + 1)).show()

๐Ÿง  Summary

Use CaseRecommended API
Type-safety + compile-time error catching (Scala/Java)Dataset
SQL-like analytics, best performance, PySpark-friendlyDataFrame
Full control, low-level transformations, complex UDFsRDD

Pages: 1 2 3 4 5 6 7


Discover more from HintsToday

Subscribe to get the latest posts sent to your email.

Posted in

Leave a Reply

Discover more from HintsToday

Subscribe now to keep reading and get access to the full archive.

Continue reading