Perfect! Here’s everything inline, right in this window:


โœ… Part 1: Spark Cluster Simulation Notebook (Inline Code)

This Jupyter/Databricks notebook simulates how Spark behaves across cluster components:

# ๐Ÿ“˜ Spark Cluster Execution Flow Simulation Notebook

from pyspark.sql import SparkSession
from pyspark.sql.functions import broadcast

# Step 1: Start SparkSession (Driver starts)
spark = SparkSession.builder \
    .appName("SparkClusterSimulation") \
    .config("spark.executor.instances", "3") \
    .config("spark.executor.memory", "2g") \
    .config("spark.executor.cores", "2") \
    .config("spark.sql.shuffle.partitions", "6") \
    .getOrCreate()

# Step 2: Simulate data source read (~Stage 0)
df_large = spark.range(1, 10000000).withColumnRenamed("id", "user_id")
df_lookup = spark.createDataFrame([(i, f"Name_{i}") for i in range(1, 1000)], ["user_id", "name"])

# Step 3: Broadcast join to avoid shuffle stage
joined_df = df_large.join(broadcast(df_lookup), "user_id")

# Step 4: GroupBy operation (Stage may be merged if no shuffle required)
agg_df = joined_df.groupBy("name").count()

# Step 5: Cache the result (Stored in executor memory)
agg_df.cache()
agg_df.count()  # triggers caching

# Step 6: Write operation
agg_df.write.mode("overwrite").parquet("/tmp/output")

# Step 7: Checkpointing simulation (break lineage)
spark.sparkContext.setCheckpointDir("/tmp/checkpoints")
chk_df = agg_df.checkpoint()
chk_df.count()

# Final Step: Stop Spark
spark.stop()

๐Ÿง  Use .explain(True) at any step to inspect execution plan.


โœ… Part 2: Spark Execution Flow โ€” Mindmap Style Summary (Inline)

๐Ÿ“Œ Apache Spark Execution Flow
โ”œโ”€โ”€ ๐Ÿง  Driver Program
โ”‚   โ”œโ”€โ”€ Initializes SparkSession
โ”‚   โ”œโ”€โ”€ Builds Logical Plan, DAG
โ”‚   โ”œโ”€โ”€ Connects to Cluster Manager
โ”‚   โ””โ”€โ”€ Schedules Jobs, Tracks Tasks
โ”‚
โ”œโ”€โ”€ ๐Ÿงฉ Cluster Manager (YARN / Kubernetes / Standalone)
โ”‚   โ”œโ”€โ”€ Allocates resources (Executors)
โ”‚   โ”œโ”€โ”€ Launches executors on worker nodes
โ”‚   โ””โ”€โ”€ Reports executor status to Driver
โ”‚
โ”œโ”€โ”€ โš™๏ธ Executors (JVMs on Worker Nodes)
โ”‚   โ”œโ”€โ”€ Run Tasks (from Stages)
โ”‚   โ”œโ”€โ”€ Store Cache (memory/disk)
โ”‚   โ”œโ”€โ”€ Write shuffle files
โ”‚   โ””โ”€โ”€ Return results to Driver
โ”‚
โ”œโ”€โ”€ ๐Ÿ“Š Stages and Tasks
โ”‚   โ”œโ”€โ”€ Narrow Dependencies โ†’ 1 Stage
โ”‚   โ”œโ”€โ”€ Wide Dependencies (shuffle) โ†’ New Stage
โ”‚   โ””โ”€โ”€ Each stage = set of parallel tasks
โ”‚
โ”œโ”€โ”€ ๐Ÿ” Fault Tolerance
โ”‚   โ”œโ”€โ”€ If task fails โ†’ Retry (default 4 times)
โ”‚   โ”œโ”€โ”€ If executor fails โ†’ Reassign task
โ”‚   โ””โ”€โ”€ If all retries fail โ†’ Stage/job fails
โ”‚
โ””โ”€โ”€ ๐Ÿ’พ Optimizations
    โ”œโ”€โ”€ Cache / Persist
    โ”œโ”€โ”€ Broadcast joins
    โ”œโ”€โ”€ Checkpointing (cut long DAG)
    โ””โ”€โ”€ Coalesce / Repartition control parallelism

โœ… Optional: Mindmap Format You Can Copy to Draw.io or Notion

Apache Spark
โ”œโ”€โ”€ Driver
โ”‚   โ”œโ”€โ”€ SparkSession
โ”‚   โ”œโ”€โ”€ Logical Plan โ†’ Optimizer โ†’ DAG
โ”‚   โ””โ”€โ”€ Job & Task Scheduling
โ”œโ”€โ”€ Cluster Manager
โ”‚   โ”œโ”€โ”€ YARN
โ”‚   โ”œโ”€โ”€ Kubernetes
โ”‚   โ””โ”€โ”€ Standalone
โ”œโ”€โ”€ Executors
โ”‚   โ”œโ”€โ”€ Task Execution
โ”‚   โ”œโ”€โ”€ Memory for Cache
โ”‚   โ””โ”€โ”€ Shuffle Data Handling
โ”œโ”€โ”€ DAG & Stages
โ”‚   โ”œโ”€โ”€ Narrow vs Wide
โ”‚   โ”œโ”€โ”€ Shuffle = Stage Break
โ”‚   โ””โ”€โ”€ Physical Plan: .explain()
โ”œโ”€โ”€ Tasks
โ”‚   โ”œโ”€โ”€ Parallel Units
โ”‚   โ””โ”€โ”€ One task per data partition
โ”œโ”€โ”€ Optimizations
โ”‚   โ”œโ”€โ”€ Broadcast Joins
โ”‚   โ”œโ”€โ”€ Caching
โ”‚   โ”œโ”€โ”€ Coalesce / Repartition
โ”‚   โ””โ”€โ”€ Checkpointing
โ””โ”€โ”€ Fault Tolerance
    โ”œโ”€โ”€ Retry Failed Tasks
    โ”œโ”€โ”€ Recompute Lineage
    โ””โ”€โ”€ DAG Recovery

Pages: 1 2


Discover more from HintsToday

Subscribe to get the latest posts sent to your email.

Posted in

Leave a Reply

Discover more from HintsToday

Subscribe now to keep reading and get access to the full archive.

Continue reading