Perfect! Here’s everything inline, right in this window:
โ Part 1: Spark Cluster Simulation Notebook (Inline Code)
This Jupyter/Databricks notebook simulates how Spark behaves across cluster components:
# ๐ Spark Cluster Execution Flow Simulation Notebook
from pyspark.sql import SparkSession
from pyspark.sql.functions import broadcast
# Step 1: Start SparkSession (Driver starts)
spark = SparkSession.builder \
.appName("SparkClusterSimulation") \
.config("spark.executor.instances", "3") \
.config("spark.executor.memory", "2g") \
.config("spark.executor.cores", "2") \
.config("spark.sql.shuffle.partitions", "6") \
.getOrCreate()
# Step 2: Simulate data source read (~Stage 0)
df_large = spark.range(1, 10000000).withColumnRenamed("id", "user_id")
df_lookup = spark.createDataFrame([(i, f"Name_{i}") for i in range(1, 1000)], ["user_id", "name"])
# Step 3: Broadcast join to avoid shuffle stage
joined_df = df_large.join(broadcast(df_lookup), "user_id")
# Step 4: GroupBy operation (Stage may be merged if no shuffle required)
agg_df = joined_df.groupBy("name").count()
# Step 5: Cache the result (Stored in executor memory)
agg_df.cache()
agg_df.count() # triggers caching
# Step 6: Write operation
agg_df.write.mode("overwrite").parquet("/tmp/output")
# Step 7: Checkpointing simulation (break lineage)
spark.sparkContext.setCheckpointDir("/tmp/checkpoints")
chk_df = agg_df.checkpoint()
chk_df.count()
# Final Step: Stop Spark
spark.stop()
๐ง Use .explain(True)
at any step to inspect execution plan.
โ Part 2: Spark Execution Flow โ Mindmap Style Summary (Inline)
๐ Apache Spark Execution Flow
โโโ ๐ง Driver Program
โ โโโ Initializes SparkSession
โ โโโ Builds Logical Plan, DAG
โ โโโ Connects to Cluster Manager
โ โโโ Schedules Jobs, Tracks Tasks
โ
โโโ ๐งฉ Cluster Manager (YARN / Kubernetes / Standalone)
โ โโโ Allocates resources (Executors)
โ โโโ Launches executors on worker nodes
โ โโโ Reports executor status to Driver
โ
โโโ โ๏ธ Executors (JVMs on Worker Nodes)
โ โโโ Run Tasks (from Stages)
โ โโโ Store Cache (memory/disk)
โ โโโ Write shuffle files
โ โโโ Return results to Driver
โ
โโโ ๐ Stages and Tasks
โ โโโ Narrow Dependencies โ 1 Stage
โ โโโ Wide Dependencies (shuffle) โ New Stage
โ โโโ Each stage = set of parallel tasks
โ
โโโ ๐ Fault Tolerance
โ โโโ If task fails โ Retry (default 4 times)
โ โโโ If executor fails โ Reassign task
โ โโโ If all retries fail โ Stage/job fails
โ
โโโ ๐พ Optimizations
โโโ Cache / Persist
โโโ Broadcast joins
โโโ Checkpointing (cut long DAG)
โโโ Coalesce / Repartition control parallelism
โ Optional: Mindmap Format You Can Copy to Draw.io or Notion
Apache Spark
โโโ Driver
โ โโโ SparkSession
โ โโโ Logical Plan โ Optimizer โ DAG
โ โโโ Job & Task Scheduling
โโโ Cluster Manager
โ โโโ YARN
โ โโโ Kubernetes
โ โโโ Standalone
โโโ Executors
โ โโโ Task Execution
โ โโโ Memory for Cache
โ โโโ Shuffle Data Handling
โโโ DAG & Stages
โ โโโ Narrow vs Wide
โ โโโ Shuffle = Stage Break
โ โโโ Physical Plan: .explain()
โโโ Tasks
โ โโโ Parallel Units
โ โโโ One task per data partition
โโโ Optimizations
โ โโโ Broadcast Joins
โ โโโ Caching
โ โโโ Coalesce / Repartition
โ โโโ Checkpointing
โโโ Fault Tolerance
โโโ Retry Failed Tasks
โโโ Recompute Lineage
โโโ DAG Recovery
Leave a Reply