Hereβs a complete blueprint to help you develop and maintain CI/CD pipelines using GitHub for automated deployment , version control , and DevOps best practices in data engineering β particularly for Azure + Databricks + ADF projects.
π PART 1: Develop & Maintain CI/CD Pipelines Using GitHub β
Technologies & Tools Tool Purpose GitHub Code repo + Actions for CI/CD Databricks Repos Git integration with notebooks/jobs GitHub Actions Build/test/deploy pipelines Terraform or Bicep Infrastructure as Code (IaC) ADF ARM templates Deployment of pipelines and triggers Databricks CLI / REST API Automation for notebooks/jobs/tables
π οΈ Sample CI/CD Pipeline for a Data Platform π Repo Structure /data-platform/
βββ notebooks/
β βββ bronze/
β βββ silver/
β βββ gold/
βββ adf/
β βββ pipelines/
β βββ linkedservices/
β βββ triggers/
βββ infrastructure/
β βββ main.bicep (or main.tf)
βββ tests/
βββ .github/workflows/
β βββ deploy.yml
βββ README.md
π Sample GitHub Actions CI/CD Workflow (.github/workflows/deploy.yml
) name: CI-CD Deploy ADF + Databricks
on:
push:
branches: [main]
env:
DATABRICKS_HOST: ${{ secrets.DATABRICKS_HOST }}
DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_TOKEN }}
RESOURCE_GROUP: "rg-data-eng"
ADF_NAME: "adf-production"
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v3
- name: Deploy ADF via ARM Template
uses: azure/CLI@v1
with:
inlineScript: |
az login --service-principal -u ${{ secrets.AZURE_CLIENT_ID }} \
-p ${{ secrets.AZURE_CLIENT_SECRET }} \
--tenant ${{ secrets.AZURE_TENANT_ID }}
az deployment group create \
--resource-group $RESOURCE_GROUP \
--template-file adf/main-template.json \
--parameters adf/parameters.json
- name: Sync Notebooks to Databricks
run: |
pip install databricks-cli
databricks workspace import_dir ./notebooks /Repos/data-pipeline -o
π§ PART 2: Collaborate with Cross-Functional Teams to Drive Data Strategy & Quality πΉ Strategies for Collaboration Role Involvement Data Scientists Provide cleaned and well-modeled data Data Analysts Expose curated data via governed views Business Define key metrics, SLAs Ops & Security Ensure audit, access control, and cost management
πΉ Key Practices Maintain shared data dictionaries Automate schema checks & column validations Create Slack/email alerts for pipeline failures Use Unity Catalog for lineage + access control Implement contracts between layers (Bronze β Silver β Gold) β
Sample Data Quality Check (PySpark) from pyspark.sql.functions import col, isnan, count
df.select([count(when(col(c).isNull() | isnan(c), c)).alias(c) for c in df.columns]).show()
ποΈ PART 3: DevOps & Infrastructure-as-Code (IaC) Best Practices β
DevOps Best Practices for Data Engineering Practice Description Code Everything Notebooks, ADF, ACLs, configs Use Secrets Use GitHub or Azure Key Vault Use Environments Dev, QA, Prod using config params Fail Fast Retry logic + exit codes for pipelines Test First Unit test Spark jobs before deploy
β
Terraform Example: Provision Databricks Workspace + Unity Catalog resource "azurerm_databricks_workspace" "this" {
name = "dbx-dev"
location = "East US"
resource_group_name = var.resource_group_name
sku = "premium"
}
resource "databricks_catalog" "finance" {
name = "finance_catalog"
comment = "Managed by Terraform"
}
β
Use Infrastructure Environments (Terraform or Bicep) Env Purpose dev For experimentation qa For integration tests prod Strictly governed + read-only
Use a single codebase with different parameters/configs per environment
β
Final Checklist Category Status Git integration with Databricks Repos β
ADF pipelines version-controlled in Git β
CI/CD GitHub Actions for ADF + notebooks β
Secrets managed securely (Vault or GitHub) β
Terraform/Bicep for infra provisioning β
Data contracts and schema enforcement β
Testing + rollback strategy β
Unity Catalog for secure data sharing β
Leave a Reply